Features

- Wide Range of Digital and Analog Signal Levels
- Digital 3 V to 20 V
- Analog \qquad $\leq 20 V_{P-P}$
- Low ON Resistance, 125Ω (Typ) Over $15 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Signal Input Range for $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=18 \mathrm{~V}$
- High OFF Resistance, Channel Leakage of $\pm 100 \mathrm{pA}$ (Typ) at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=18 \mathrm{~V}$
- Logic-Level Conversion for Digital Addressing Signals of 3 V to $20 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=3 \mathrm{~V}\right.$ to 20V) to Switch Analog Signals to $20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{~V}\right)$
- Matched Switch Characteristics, roN $=5 \Omega$ (Typ) for $V_{D D}-V_{E E}=15 \mathrm{~V}$
- Very Low Quiescent Power Dissipation Under All DigitalControl Input and Supply Conditions, $0.2 \mu \mathrm{~W}$ (Typ) at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V}$
- Binary Address Decoding on Chip
- 5V, 10V, and 15 V Parametric Ratings
- 100% Tested for Quiescent Current at 20 V
- Maximum Input Current of $1 \mu \mathrm{~A}$ at 18 V Over Full Package Temperature Range, 100 nA at 18 V and $25^{\circ} \mathrm{C}$
- Break-Before-Make Switching Eliminates Channel Overlap

Applications

- Analog and Digital Multiplexing and Demultiplexing
- A/D and D/A Conversion
- Signal Gating

CMOS Analog Multiplexers/Demultiplexers with Logic Level Conversion

The CD4051B, CD4052B, and CD4053B analog multiplexers are digitally-controlled analog switches having low ON impedance and very low OFF leakage current. Control of analog signals up to $20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ can be achieved by digital signal amplitudes of 4.5 V to 20 V (if $\mathrm{V}_{D D}-\mathrm{V}_{S S}=3 \mathrm{~V}$, a $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$ of up to 13 V can be controlled; for $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {EE }}$ level differences above 13 V , a $V_{D D}-V_{S S}$ of at least 4.5 V is required). For example, if $\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{EE}}=-13.5 \mathrm{~V}$, analog signals from -13.5 V to +4.5 V can be controlled by digital inputs of 0 V to 5 V . These multiplexer circuits dissipate extremely low quiescent power over the full $V_{D D}-V_{S S}$ and $V_{D D}-V_{E E}$ supply-voltage ranges, independent of the logic state of the control signals. When a logic " 1 " is present at the inhibit input terminal, all channels are off.

The CD4051B is a single 8-Channel multiplexer having three binary control inputs, A, B, and C , and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

The CD4052B is a differential 4-Channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

The CD4053B is a triple 2-Channel multiplexer having three separate digital control inputs, A, B, and C , and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole, double-throw configuration.

When these devices are used as demultiplexers, the "CHANNEL IN/OUT" terminals are the outputs and the "COMMON OUT/IN" terminals are the inputs.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE
CD4051BF3A, CD4052BF3A, CD4053BF3A	-55 to 125	16 Ld CERAMIC DIP
CD4051BE, CD4052BE, CD4053BE	-55 to 125	16 Ld PDIP
CD4051BM, CD4051BMT, CD4051BM96 CD4052BM, CD4052BMT, CD4052BM96 CD4053BM, CD4053BMT, CD4053BM96	-55 to 125	16 Ld SOIC
CD4051BNSR, CD4052BNSR, CD4053BNSR	-55 to 125	16 Ld SOP
CD4051BPW, CD4051BPWR, CD4052BPW, CD4052BPWR CD4053BPW, CD4053BPWR	-55 to 125	16 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250 .

Pinouts

Functional Block Diagrams

\dagger All inputs are protected by standard CMOS protection network.

Functional Block Diagrams (Continued)
CD4052B

CD4053B

TRUTH TABLES

INPUT STATES				"ON" CHANNEL(S)
INHIBIT	C	B	A	
CD4051B				
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	X	X	X	None
CD4052B				
INHIBIT			A	
0			0	$0 \mathrm{x}, 0 \mathrm{y}$
0			1	1x, 1y
0			0	$2 \mathrm{x}, 2 \mathrm{y}$
0			1	$3 x, 3 y$
1			X	None
CD4053B				
INHIBIT	A OR B OR C			
0	0			ax or bx or cx
0	1			ay or by or cy
1	X			None

Absolute Maximum Ratings
Supply Voltage (V+ to V-)
Voltages Referenced to $\mathrm{V}_{\text {SS }}$ Terminal -0.5 V to 20 V DC Input Voltage Range -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
DC Input Current, Any One Input.
Operating Conditions
Temperature Range \qquad $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Package Thermal Impedance, $\theta_{J A}$ (see Note 1):

E (PDIP) package.	$67^{\circ} \mathrm{C} / \mathrm{W}$
M (SOIC) package	$73^{\circ} \mathrm{C} / \mathrm{W}$
NS (SOP) package.	$64^{\circ} \mathrm{C} / \mathrm{W}$
PW (TSSOP) package	$108^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature (Ceramic Package)	$75^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package)	$150^{\circ} \mathrm{C}$
aximum Storage Temperature Range .	C to $150^{\circ} \mathrm{C}$
aximum Lead Temperature (Soldering 10s)	$265{ }^{\circ} \mathrm{C}$

(SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Specifications Common Conditions Here: If Whole Table is For the Full Temp. Range, $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$, $R_{L}=100 \Omega$, Unless Otherwise Specified (Note 3)

PARAMETER	CONDITIONS				LIMITS AT INDICATED TEMPERATURES (${ }^{\circ} \mathrm{C}$)							UNITS
	$\mathrm{V}_{\text {IS }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$	$\mathrm{V}_{\text {ss }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	-55	-40	85	125	25			
									MIN	TYP	MAX	
NAL INPUTS (V)	OUTPU	(Vos)										

Quiescent Device Current, IDD Max	-	-		-	5	5	5	150	150	-	0.04	5	$\mu \mathrm{A}$
	-	-		-	10	10	10	300	300	-	0.04	10	$\mu \mathrm{A}$
	-	-		-	15	20	20	600	600	-	0.04	20	$\mu \mathrm{A}$
	-	-		-	20	100	100	3000	3000	-	0.08	100	$\mu \mathrm{A}$
Drain to Source ON Resistance ron Max $0 \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{DD}}$	-	0		0	5	800	850	1200	1300	-	470	1050	Ω
	-	0		0	10	310	330	520	550	-	180	400	Ω
	-	0		0	15	200	210	300	320	-	125	240	Ω
Change in ON Resistance (Between Any Two Channels), $\Delta^{\prime} \mathrm{ON}$	-	0		0	5	-	-	-	-	-	15	-	Ω
	-	0		0	10	-	-	-	-	-	10	-	Ω
	-	0		0	15	-	-	-	-	-	5	-	Ω
OFF Channel Leakage Current: Any Channel OFF (Max) or ALL Channels OFF (Common OUT/IN) (Max)	-	0		0	18	± 100 (Note 2)		± 1000 (Note 2)		-	± 0.01	$\begin{aligned} & \pm 100 \\ & \text { (Note 2) } \end{aligned}$	nA
Capacitance: Input, $\mathrm{C}_{\text {IS }}$	-		-5	5	5	-	-	-	-	-	5	-	pF
Output, COS CD4051						-	-	-	-	-	30	-	pF
CD4052						-	-	-	-	-	18	-	pF
CD4053						-	-	-	-	-	9	-	pF
Feedthrough $\mathrm{C}_{\mathrm{IOS}}$						-	-	-	-	-	0.2	-	pF
Propagation Delay Time (Signal Input to Output	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{aligned}$			5	-	-	-	-	-	30	60	ns
					10	-	-	-	-	-	15	30	ns
					15	-	-	-	-	-	10	20	ns

Electrical Specifications Common Conditions Here: If Whole Table is For the Full Temp. Range, $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$, $R_{L}=100 \Omega$, Unless Otherwise Specified (Continued) (Note 3)

PARAMETER	CONDITIONS				LIMITS AT INDICATED TEMPERATURES (${ }^{\circ} \mathrm{C}$)							UNITS
	$\mathrm{V}_{\text {IS }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$	$\mathrm{V}_{\text {SS }}(\mathrm{V})$	V_{DD} (V)	-55	-40	85	125	25			
									MIN	TYP	MAX	
CONTROL (ADDRESS OR INHIBIT), $\mathrm{V}_{\mathbf{C}}$												
$\begin{aligned} & \text { Input Low Voltage, } \mathrm{V}_{\mathrm{IL}} \text {, } \\ & \text { Max } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DD}} \\ & \text { through } \\ & 1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ & \text { through } \\ & 1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & V_{E E}=V_{S S}, \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}, \\ & I_{I S}<2 \mu A \text { on All } \\ & \text { OFF Channels } \end{aligned}$		5	1.5	1.5	1.5	1.5	-	-	1.5	V
				10	3	3	3	3	-	-	3	V
				15	4	4	4	4	-	-	4	V
Input High Voltage, V_{IH}, Min				5	3.5	3.5	3.5	3.5	3.5	-	-	V
				10	7	7	7	7	7	-	-	V
				15	11	11	11	11	11	-	-	V
Input Current, $\mathrm{I}_{\text {IN }}$ (Max)	$\mathrm{V}_{\mathrm{IN}}=0,18$			18	± 0.1	± 0.1	± 1	± 1	-	$\pm 10^{-5}$	± 0.1	$\mu \mathrm{A}$
Propagation Delay Time: Address-to-Signal OUT (Channels ON or OFF) See Figures 10, 11, 14	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0	0	5	-	-	-	-	-	450	720	ns
		0	0	10	-	-	-	-	-	160	320	ns
		0	0	15	-	-	-	-	-	120	240	ns
		-5	0	5	-	-	-	-	-	225	450	ns
Propagation Delay Time: Inhibit-to-Signal OUT (Channel Turning ON) See Figure 11	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	0	0	5	-	-	-	-	-	400	720	ns
		0	0	10	-	-	-	-	-	160	320	ns
		0	0	15	-	-	-	-	-	120	240	ns
		-10	0	5	-	-	-	-	-	200	400	ns
Propagation Delay Time: Inhibit-to-Signal OUT (Channel Turning OFF) See Figure 15	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0	0	5	-	-	-	-	-	200	450	ns
		0	0	10	-	-	-	-	-	90	210	ns
		0	0	15	-	-	-	-	-	70	160	ns
		-10	0	5	-	-	-	-	-	130	300	ns
Input Capacitance, C_{IN} (Any Address or Inhibit Input)					-	-	-	-	-	5	7.5	pF

NOTE:
2. Determined by minimum feasible leakage measurement for automatic testing.

Electrical Specifications

PARAMETER	TEST CONDITIONS					LIMITS	UNITS
	$\mathrm{V}_{\text {IS }}$ (V)	V_{DD} (V)	$\mathrm{R}_{\mathrm{L}}(\mathrm{k} \Omega)$			TYP	
Cutoff (-3dB) Frequency Channel ON (Sine Wave Input)	5 (Note 3)	10	1	$\mathrm{V}_{\text {OS }}$ at Common OUT/IN	CD4053	30	MHz
	$\begin{aligned} \mathrm{V}_{\mathrm{EE}}= & \mathrm{V}_{\mathrm{SS}}, \\ & 20 \mathrm{Log} \frac{\mathrm{~V}_{\mathrm{OS}}}{\mathrm{~V}_{\mathrm{IS}}}=-3 \mathrm{~dB} \end{aligned}$				CD4052	25	MHz
				CD4051	20	MHz	
				$\mathrm{V}_{\text {OS }}$ at Any Channel	60	MHz	

Electrical Specifications

PARAMETER	TEST CONDITIONS					LIMITS	UNITS		
	$\mathrm{V}_{\text {IS }}(\mathrm{V})$	V_{DD} (V)	$\mathrm{R}_{\mathrm{L}}(\mathrm{k} \Omega)$			TYP			
Total Harmonic Distortion, THD	2 (Note 3)	5	10			0.3	\%		
	3 (Note 3)	10				0.2	\%		
	5 (Note 3)	15				0.12	\%		
	$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\text {SS }}, \mathrm{f}_{\mathrm{IS}}=1 \mathrm{kHz}$ Sine Wave					\%			
-40dB Feedthrough Frequency (All Channels OFF)	5 (Note 3)	10	1	$\mathrm{V}_{\text {OS }}$ at Common OUT/IN			8	MHz	
	$\begin{aligned} \mathrm{V}_{\mathrm{EE}}= & \mathrm{V}_{\mathrm{SS}}, \\ & 20 \mathrm{Log} \frac{\mathrm{~V}_{\mathrm{OS}}}{\mathrm{~V}_{\mathrm{IS}}}=-40 \mathrm{~dB} \end{aligned}$					10	MHz		
				12	MHz				
				$\mathrm{V}_{\text {OS }}$ at Any Channel	8	MHz			
-40dB Signal Crosstalk Frequency	5 (Note 3)	10	1			Between Any 2 Channels		3	MHz
	$\begin{aligned} \mathrm{V}_{\mathrm{EE}}= & \mathrm{V}_{\mathrm{SS}}, \\ & 20 \mathrm{Log} \frac{\mathrm{~V}_{\mathrm{OS}}}{\mathrm{~V}_{\mathrm{IS}}}=-40 \mathrm{~dB} \end{aligned}$			Between Sections, CD4052 Only	Measured on Common	6	MHz		
				Measured on Any Channel	10	MHz			
				Between Any Two Sections, CD4053 Only	In Pin 2, Out Pin 14	2.5	MHz		
				In Pin 15, Out Pin 14	6	MHz			
Address-or-Inhibit-to-Signal Crosstalk	-	10	$\begin{gathered} 10 \\ \text { (Note 4) } \end{gathered}$				65	$m V_{\text {PEAK }}$	
	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{CC}} \\ & =\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \text { (Square Wave) } \end{aligned}$					65	$m V_{\text {PEAK }}$		

NOTES:
3. Peak-to-Peak voltage symmetrical about $\frac{V_{D D}-V_{E E}}{2}$
4. Both ends of channel.

Typical Performance Curves

FIGURE 1. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 2. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

Typical Performance Curves (Continued)

FIGURE 3. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 5. ON CHARACTERISTICS FOR 1 OF 8 CHANNELS (CD4051B)

FIGURE 7. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4052B)

FIGURE 4. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 6. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4051B)

FIGURE 8. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4053B)

Test Circuits and Waveforms

NOTE: The ADDRESS (digital-control inputs) and INHIBIT logic levels are: " 0 " $=V_{S S}$ and " 1 " = $V_{D D}$. The analog signal (through the TG) may swing from V_{EE} to V_{DD}.

FIGURE 9. TYPICAL BIAS VOLTAGES

FIGURE 10. WAVEFORMS, CHANNEL BEING TURNED ON ($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$)

FIGURE 11. WAVEFORMS, CHANNEL BEING TURNED OFF ($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$)

FIGURE 12. OFF CHANNEL LEAKAGE CURRENT - ANY CHANNEL OFF

Test Circuits and Waveforms (Continued)

FIGURE 13. OFF CHANNEL LEAKAGE CURRENT - ALL CHANNELS OFF

FIGURE 14. PROPAGATION DELAY - ADDRESS INPUT TO SIGNAL OUTPUT

FIGURE 15. PROPAGATION DELAY - INHIBIT INPUT TO SIGNAL OUTPUT

FIGURE 16. INPUT VOLTAGE TEST CIRCUITS (NOISE IMMUNITY)

Test Circuits and Waveforms (Continued)

FIGURE 17. QUIESCENT DEVICE CURRENT

FIGURE 18. CHANNEL ON RESISTANCE MEASUREMENT CIRCUIT

FIGURE 19. INPUT CURRENT

FIGURE 20. FEEDTHROUGH (ALL TYPES)

FIGURE 21. CROSSTALK BETWEEN ANY TWO CHANNELS (ALL TYPES)

FIGURE 22. CROSSTALK BETWEEN DUALS OR TRIPLETS (CD4052B, CD4053B)

Test Circuits and Waveforms (Continued)

FIGURE 23. TYPICAL TIME-DIVISION APPLICATION OF THE CD4052B

Special Considerations

In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed $V_{D D} / R_{L}$ ($R_{L}=$ effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD4051B, CD4052B or CD4053B.

FIGURE 24. 24-TO-1 MUX ADDRESSING

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
7901502EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
8101801EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N/ A for Pkg Type
CD4051BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD4051BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD4051BF	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N/ A for Pkg Type
CD4051BF3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
CD4051BM	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BM96	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BM96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BM96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4051BME4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BMG4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BMT	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BMTE4	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BMTG4	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BNSR	ACTIVE	So	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BNSRE4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BNSRG4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BPW	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BPWE4	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BPWG4	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BPWR	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BPWRE4	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4051BPWRG4	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD4052BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD4052BF	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type

PACKAGE OPTION ADDENDUM
www.ti.com
17-May-2008

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
CD4052BF3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
CD4052BM	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BM96	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4052BM96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BM96G4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BME4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4052BMG4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BMT	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BMTE4	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4052BMTG4	ACTIVE	SOIC	D	16	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BNSR	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BNSRE4	ACTIVE	So	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BNSRG4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BPW	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BPWE4	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BPWG4	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BPWR	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BPWRE4	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4052BPWRG4	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4053BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD4053BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD4053BF	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
CD4053BF3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
CD4053BM	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4053BM96	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4053BM96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4053BM96G4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
CD4053BME4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BMG4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BMT	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BMTE4	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BMTG4	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BNSRE4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD4053BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD4053BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
 Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
 Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
 Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD4051BM96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4051BM96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4051BNSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 |
| CD4051BPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| CD4052BM96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4052BNSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 |
| CD4052BPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| CD4053BM96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4053BNSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 |
| CD4053BPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |

INSTRUMENTS
www.ti.com

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4051BM96	SOIC	D	16	2500	333.2	345.9	28.6
CD4051BM96	SOIC	D	16	2500	346.0	346.0	33.0
CD4051BNSR	SO	NS	16	2000	346.0	346.0	33.0
CD4051BPWR	TSSOP	PW	16	2000	346.0	346.0	29.0
CD4052BM96	SOIC	D	16	2500	333.2	345.9	28.6
CD4052BNSR	SO	NS	16	2000	346.0	346.0	33.0
CD4052BPWR	TSSOP	PW	16	2000	346.0	346.0	29.0
CD4053BM96	SOIC	D	16	2500	333.2	345.9	28.6
CD4053BNSR	SO	NS	16	2000	346.0	346.0	33.0
CD4053BPWR	TSSOP	PW	16	2000	346.0	346.0	29.0

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AC.

D(R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

